Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 250, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587660

RESUMO

Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.


Assuntos
Realidade Aumentada , Pele , Medicina de Precisão , Eletrônica , Atenção à Saúde
2.
Opt Express ; 26(14): A626-A635, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114056

RESUMO

Numerical simulation of both single and double absorbing layers in amorphous silicon thin film solar cell is performed with the use of AFORS-HET. A single absorbing layer solar cell with both a-SiH and a-SiGeH is designed and compared with a tandem heterojunction solar cell, a-SiC/a-SiH/a-Si(i)/a-SiGeH. Design parameters are investigated, compared and optimized. The maximum efficiency for each single absorbing layer and for a tandem heterojunction thin film solar cell, a-SiC/a-SiH/a-Si(i)/a-SiGeH, is predicted. The results are validated by comparing with two different method of analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...